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SURFACE TENSION

Definition
In the fall a fisherman’s boat is often surrounded by fallen leaves that are lying on the
water.  The boat floats, because it is partially immersed in the water and the resulting
buoyant force balances its weight, as Section 11.6 discusses.  The leaves, however, float
for a different reason.  They are not immersed in the water, so the weight of a leaf is not
balanced by a buoyant force.  Instead, the force balancing a leaf’s weight arises because
of the surface tension of the water.  Surface tension is a property that allows the surface
of a liquid to behave somewhat as a trampoline does.  When a person stands on a
trampoline, the trampoline stretches downward a bit and, in so doing, exerts an upward
elastic force on the person.  This upward force balances the person’s weight.  The surface
of the water behaves in a similar way.  In Figure 1, for instance, you can see the
indentations in the water surface made by the feet of an insect known as a water strider,
because it can stride or walk on the surface just as a person can walk on a trampoline.

Figure 1  The indentations in the water surface made by a water strider are readily seen
in this photograph.  The surface tension of the water allows the insect to walk on the
water without sinking. (  Hermann Eisenbess/Photo Researchers)

Figure 2 illustrates the molecular basis for surface tension by considering the
attractive forces that molecules in a liquid exert on one another.  Part a shows a molecule
within the bulk liquid, so that it is surrounded on all sides by other molecules.  The
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surrounding molecules attract the central molecule equally in all directions, leading to a
zero net force.  In contrast, part b shows a molecule in the surface.  Since there are no
molecules of the liquid above the surface, this molecule experiences a net attractive force
pointing toward the liquid interior.  This net attractive force causes the liquid surface to
contract toward the interior until repulsive collisional forces from the other molecules
halt the contraction at the point when the surface area is a minimum.  If the liquid is not
acted upon by external forces, a liquid sample forms a sphere, which has the minimum
surface area for a given volume.  Nearly spherical drops of water are a familiar sight, for
example, when the external forces are negligible.

Figure 2  (a) A molecule within the bulk liquid is surrounded on all sides by other
molecules, which attract it equally in all directions, leading to a zero net force.  (b) A
molecule in the surface experiences a net attractive force pointing toward the liquid
interior, because there are no molecules of the liquid above the surface.

To help us define the surface tension we use the apparatus shown in Figure 3.  It
consists of a C-shaped wire frame, on which is mounted a wire that can slide with
negligible friction.  The frame and sliding wire contain a thin film of liquid.  Because
surface tension causes the liquid surface to contract, a force F is needed to move the
slider to the right and extend the surface.  The surface tension is denoted by the Greek
letter gamma (γ) and, as indicated by Equation 1, is the magnitude F of the force per unit
length over which it acts.  Table 1 gives the value of the surface tension for some typical
materials.
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■  DEFINITION OF SURFACE TENSION
The surface tension γ is the magnitude F of the force exerted parallel to the surface of a
liquid divided by the length L of the line over which the force acts:

γ =
F

L
(1)

SI Unit of Surface Tension:  N/m

For the specific case illustrated in Figure 3, there is an upper surface and a lower surface,
as the blow-up drawing indicates.  Thus, the force F acts along a total length of L = 2�,
where � is the length of the slider.  Example 1 deals with a demonstration of the effects of
surface tension that you can try yourself.

Figure 3  This apparatus, consisting of a C-shaped wire frame and a wire slider, can be
used to measure the surface tension of a liquid.

Table 1  Surface Tensions of Common Liquids
Liquid Surface Tension γ (N/m)
Benzene (20 °C) 0.029
Blood (37 °C) 0.058
Glycerin (20 °C) 0.063
Mercury (20 °C) 0.47
Water (20 °C) 0.073
Water (100 °C) 0.059

EXAMPLE 1  •   Floating a Needle on the Surface of Water

A needle has a length of 3.2 cm.  When placed gently on the surface of the water (γ =
0.073 N/m) in a glass, this needle will float if it is not too heavy.  What is the weight of
the heaviest needle that can be used in this demonstration?

Lower film surface

Upper film surface
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Reasoning  As the end view in Figure 4 shows, three forces act on the needle, its weight
W and the two forces F1 and F2 due to the surface tension of the water.  The forces F1
and F2 result from the surface tension acting along the length of the needle on either side.
According to Equation 1, they have the same magnitude F1 = F2 = γ L, where γ = 0.073
N/m is the surface tension of water and L is the length of the needle.  F1 and F2 are each
tangent to the indented water surface that is formed when the needle presses on the
surface, with the result that each acts at an angle θ with respect to the vertical.  The
needle floats in equilibrium.  Therefore, the net force ΣF acting on the needle is zero.  In
the vertical direction this means that the sum of the vertical components of F1, F2, and
W equals zero.
Solution  Applying the fact that the net force acting on the needle is zero we have
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In other words, the sum of the vertical components of F1 and F2 balances the weight of
the needle.  The forces due to the surface tension will balance the largest weight when
they point completely vertically and θ = 0°.  Therefore, the weight of the heaviest needle
that can be used in this demonstration is

W L= = °= × −2 2 0 073 0 032 0 4 7 10 3γ θ� � � �� �cos . . cos . N / m  m  N

Figure 4  A needle can float on a water surface, because the surface tension of the water
can lead to forces strong enough to support the needle’s weight.

W

F1cos

End view of needle

F1

θ F2cos

F2

θθθ



− 5 of 9 −

Capillary Action
We have seen that surface tension arises because of the intermolecular forces of attraction
that molecules in a liquid exert on one another.  These forces, which are between like
molecules, are called cohesive forces.  A liquid, however, is often in contact with a solid
surface, such as glass.  Then additional forces of attraction come into play.  They occur
between molecules of the liquid and molecules of the solid surface and, being between
unlike molecules, are called adhesive forces.

Consider a tube with a very small diameter, which is called a capillary.  When a
capillary, open at both ends, is inserted into a liquid, the result of the competition
between cohesive and adhesive forces can be observed.  For instance, Figure 5 shows a
glass capillary inserted into water.  In this case, the adhesive forces are stronger than the
cohesive forces, so that the water molecules are attracted to the glass more strongly than
to each other.  The result is that the water surface curves upward against the glass.  It is
said that the water “wets” the glass.  The surface tension leads to a force F acting on the
circular boundary between the water and the glass. This force is oriented at an angle φ,
which is determined by the competition between the cohesive and adhesive forces.  The
vertical component of F pulls the water up into the tube to a height h.  At this height the
vertical component of F balances the weight of the column of water of length h.

Figure 5  Water rises in a glass capillary due to the surface tension of the water and the
fact that the water wets the glass surface.

Figure 6 shows a glass capillary inserted into mercury, a situation in which the
adhesive forces are weaker than the cohesive forces.  The mercury atoms are attracted to
each other more strongly than they are to the glass.  As a result, the mercury surface
curves downward against the glass and the mercury does not “wet” the glass.  Now, in
contrast to the situation illustrated in Figure 5, the surface tension leads to a force F, the
vertical component of which pulls the mercury down a distance h in the tube.  The
behavior of the liquids in both Figures 5 and 6 is called capillary action.

h

FφF φ
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Figure 6  Mercury falls in a glass capillary due to the surface tension of the mercury and
the fact that the mercury does not wet the glass surface.

Pressure Inside a Soap Bubble and a Liquid Drop
Anyone who’s blown up a balloon has probably noticed that the air pressure inside the
balloon is greater than on the outside. For instance, if the balloon is suddenly released,
the greater inner pressure forces the air out, propelling the balloon much like a rocket.
The reason for the greater pressure is that the tension in the stretched rubber tends to
contract the balloon. To counteract this tendency, the balloon has a greater interior air
pressure acting to expand the balloon.

A soap bubble (see Figure 7a) has two spherical surfaces (inside and outside) with a thin
layer of liquid in-between. Like a balloon, the pressure inside a soap bubble is greater than that on
the outside. As we will see shortly, this difference in pressure depends on the surface tension γ of
the liquid and the radius R of the bubble. For the sake of simplicity, let’s assume that there is no
pressure on the outside of the bubble (Po = 0). Now, imagine that the stationary soap bubble is cut
into two halves. Being at rest, each half has no acceleration and so is in equilibrium. According to
Newton’s second law of motion (see Section 4.11), a zero acceleration implies that the net force
acting on each half must be zero (ΣF = 0). We will now use this equilibrium relation to obtain an
expression relating the interior pressure to the surface tension and the radius of the bubble.

Figure 7  (a) The inner and outer pressures on the spherical soap bubble are Pi and Po,
respectively. (b) The forces pointing to the left are due to the surface tension. The forces
pointing perpendicular to the hemispherical surface are due to the air pressure inside the
bubble.
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Figure 7b shows a free-body diagram for the right half of the bubble, on which
two forces act. First, there is the force due to the surface tension in the film. This force is
exerted on the right half of the bubble by the left half. The surface tension force points to
the left and acts all along the circular edge of the hemispherical film. The magnitude of
the force due to each surface of the film is the product of the surface tension γ and the
circumference (2πR) of the circular edge, or γ (2πR). The total force due to the inner and
outer surfaces is twice this amount or −2γ (2πR). We have included the minus sign to
denote that this force points to the left in the drawing. We have also assumed the film to
be sufficiently thin enough that its inner and outer radii are nearly the same. Second,
there is a force caused by the air pressure inside the bubble. At each point on the surface
of the bubble, the force due to the air pressure is perpendicular to the surface and is
directed outward. Figure 7b shows this force at six points on the surface. When these
forces are added to obtain the total force due to the air pressure, all the components
cancel, except those pointing to the right. The total force due to all the components
pointing to the right is equal to the product of the pressure Pi inside the bubble times the
circular cross-sectional area of the hemisphere, or Pi (πR2). Using these expressions for
the forces due to the surface tension and air pressure, we can write Newton’s second law
of motion as:
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Solving this equation for the pressure inside the bubble gives Pi = 4γ/R. In general, the
pressure Po outside the bubble is not zero. However, this result still gives the difference
between the inside and outside pressures, so that we have

         P P
Ri o− = 4γ

      (Spherical soap bubble)        (2)

This result tells us that the difference in pressure depends on the surface tension and the
radius of the sphere. What is surprising is that a greater pressure exists inside a smaller
soap bubble (smaller value of R) than inside a larger one.

A spherical drop of liquid, like a drop of water, has only one surface, rather than
two surfaces, for there is no air within it. Thus, the force due to the surface tension is only
one-half as large as that in a bubble. Consequently, the difference in pressure between the
inside and outside of a liquid drop is one-half of that for a soap bubble:

P P
Ri o− = 2γ

  (Spherical liquid drop)    (3)
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Equation 3 is known as Laplace’s law for a spherical liquid drop, after the French
physicist and mathematician Marquis Pierre Simon deLaplace (1749–1827). This result
also holds for a spherical bubble in a liquid, such as a gas bubble inside a glass of beer.
However, the surface tension γ is that of the surrounding liquid in which the trapped
bubble resides. Example 2 illustrates the pressure difference for a soap bubble and a
liquid drop.

EXAMPLE 2  •   A Soap Bubble and a Liquid Drop

(a) A student, using a circular loop of wire and a pan of soapy water, produces a soap
bubble whose radius is 1.0 mm. The surface tension of the soapy water is γ = 2.5 × 10−2

N/m. Determine the pressure difference between the inside and outside of the bubble. (b)
The same soapy water is used to produce a spherical droplet whose radius is one-half that
of the bubble, or 0.50 mm. Find the pressure difference between the inside and outside of
the droplet.
Reasoning   If the bubble and drop had the same radius, we would expect that the
pressure difference between the inside and outside of the bubble to be twice as large as
that for the drop. The reason is that the bubble has two surfaces, whereas the drop has
only one. Thus, the bubble would have twice the force due to surface tension, and so the
pressure inside the bubble would have to be twice as large to counteract this larger force.
In fact, however, the bubble has twice the radius compared to the drop. The doubled
radius means that the bubble has one-half the pressure difference. Consequently, we
expect the larger bubble and smaller drop to have the same pressure difference.

Solution
(a)  The pressure difference, Pi − Po, between the inside and outside of the soap bubble is
given by Equation 2 as
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(b)  The pressure difference, Pi − Po, between the inside and outside of the drop is given
by Equation 3 as
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PROBLEMS

1.  A sliding wire of length 3.5 cm is pulling a liquid film, as Figure 3 shows. The pulling
force exerted by the wire is 4.4 × 10−3 N. From the table of surface tensions, determine
the film material.

2.  A circular ring (radius = 5.0 cm) is used to determine the surface tension of a liquid.
The plane of the ring is positioned so that it is parallel to the surface of the liquid. The
ring is immersed in the liquid and then pulled upward, so a film is formed between the
ring and the liquid. In addition to the ring’s weight, an upward force of 3.6 × 10−2 N is
required to lift the ring to the point where it just breaks free of the surface. What is the
surface tension of the liquid?

3.  Suppose that the C-shaped wire frame in Figure 3 is rotated clockwise by 90°, so that
the sliding wire would fall down if it were free to do so. The sliding wire has a length of
3.5 cm and a mass of 0.20 g. There is no friction between the sliding wire and the vertical
sides of the C-shaped wire. If the sliding wire is in equilibrium, what is the surface
tension of the film?

4.  Two soap bubbles (γ = 0.025 N/m) have radii of 2.0 and 4.5 mm. For each bubble,
determine the difference between the inside and outside pressures.

5.  Α small bubble of air in water (γ = 0.073 N/m) has a radius of 0.10 mm. Find the
difference in pressures between the inside and outside of the bubble.

*6.  A drop of oil (γ = 0.0320 N/m) has a radius of 0.0100 mm. The drop is located a
distance of 2.55 m below the surface of fresh water. The atmospheric pressure above the
water is 1.01 × 105 Pa. (a) What is the absolute pressure in the water at this depth? (b)
Determine the absolute pressure inside the oil drop.

**7.  Suppose that a bubble has the shape of a long cylinder, rather than that of a sphere.
Determine an expression for the difference between the inside and outside pressures;
express your answer in terms of the surface tension γ and the radius R of the cylinder.
(Hint: Review the reasoning that was used to obtain the difference in pressures for a
spherical soap bubble. For the cylindrical bubble, “cut” the cylinder into two halves by
slicing along a line that is parallel to the axis of the cylinder.)


